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An Improved Conscan Algorithm
Based on a Kalman Filter
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Conscan is conm]on O" used by DSN antennas to allow adaptive tracking of a

target whose position is not precisely known. This article describes an algorithn_
that is b,'k_ed on a Kahnan filter and is proposed to replace the existing" fast Fourier

transform based (FFT-based) algorithm for conscan. Advantages of this algorithm

include better pointing accuraQ; continuous update information, and accommoda-

tion of missing data. Additional135 a strategy for adaptive selection of the conscan

radius is proposed. The performance of the algorithm is illustrated through com-

puter simlflations and compared to the EFT algorithm. The results show that the

Kalman filter algorithm is consistently superior.

I. Introduction

The objective of conscan is to improve the estimate of

the target location; the target location is defined as the
direction of maximum carrier power as received on the

ground. During conscan, the antenna is rotated in a circle

about a point we call the conscan center at a constant rate
w. Figure 1 shows the variables used in the analysis.

Without loss of generality the origin is placed at the

conscan center. We define x - x(t) as the 2-vector which

specifies what we seek to estimate: the unknown actual

target at time t, and we define _ - _(t) as the est.imate
of the target's location. We assume that discrete mea-

surements are taken at times t = ti. Let the subscript "i"

denote a quantity taken at time ti; for example, xi - x(ti).

Lack of the "i" subscript implies that the affected quantity

is constant over a conscan period. We refer to xi as the

state of the syst.em, and thus _i is the state estimate. The

known instantaneous location of the antenna boresight is

defined by x_i, which during conscan is given by

Rsin (._/i) J

(1)

Here, R is referred to as the conscan radius, and w is

the conscan frequency.

The output of the antenna receiver is the carrier power

Poi. Assuming a circularly symmetric antenna gain func-
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tion, the carrier power can be approximated as a quadratic

function of the offset angle?

P_i = Poi 1 - ,u + r/i (2)

where Poi is the maximum carrier power which occurs

when the antenna is pointed directly at the target, h is

the antenna half-power l_eamwidth, tt = 4 in (2), fli is the

offset angle between the antenna boresight and the target,

and r/i is the signal noise, or error. We assume that the

signal noise is random with zero mean and is Gaussian dis-

tributed with a standard deviation of an. From Fig. 1, we
h ave

_, = X/(x, - ,.,.)"-(x, - xo,) (3)

and thus

Po,(x,):,,o,(1- " xo )),,,_(x, - x_i)T(x, -- +

If we assume that Poi = Po and xl = x are constant

throughout a conscan period, then from Eq. (1) it is easily

shown that the ensemble average of the carrier power over

the conscan period is approximately

(4)

Subtracting Eq. (5) from Eq. (4) yields

(5)

2P0[I T

pc_(xi) - (Pc_)_ --_xoix_ + _ (6)

Equation (6) constitutes the measurement equation for
the purposes of the estimators. It is important to note

that the measurement equation is linear with respect to
the unknown state xi, as this makes it possible to apply

linear estimation theory to estimate xl.

_, - P_,(xi) - (P_) (7)

We define zi as

and thus

2PO[txT xi + rli (8)
zi = h._ ,i

In the subsequent analysis, we refer to zi as our mea-
surement.

I L. Alvarez, "Open Loop Conscan Pointing Error Estimation Accu-

racy at Ka-band," JPL Interoffice Memorandum 3328-93-044 (in-

ternal document), Jet Propulsion Laboratory, Pasadena, Califor-

nia, July 8, 1993.

II. FIT Estimator

A brief discussion of the existing fast Fourier transform

(FFT) estimator is given below so that it can be compared
to tiie Kalman filter estimator. We assume that Poi = Po

and xi - x are constant over a conscan period. Multiply-
ing Eq. (8) by Xai and averaging both sides over a conscan

period yields, after some algebra,

Pop R 2
(_,x_,)= --U-x + (,7,,,o,) (0)

Utilizing the fact that Tli is assumed to be zero mean,
we obtain an estimate for the state:

h; (ZiXai)

:_ - (10)
Po#R _

We define M to be the covariance of the state estimate:

M - E ((xi - x)(:_i - x) T) (11)

where E denotes expectation, or ensemble average. After
further manipulation it can be shown that

h4o .2

- -n I (12)
M- 2P_la2R2 n

where I is the 2 x 2 identity matrix and n is the number

of samples taken over a single conscan period. This result
is consistent with results described elsewhere. 2

In practice, an FFT is used to estimate x [1]; this yields

the same result as Eq. (10) but also yieIds harmonics above
the fundamental frequency. Itence, we call this the FFT

algorithm. Use of an FFT imposes several constraints on

the algorithm: n must be an integer power of 2; .there

must bc no missing measurements; and the measurements
must be evenly spaced in time. Theoretically, failure in

2 Ibid.
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the estimator can be detected by the presence of signif-

icant amplitudes in the harmonics above the fundamen-

tal frequency, but in practice, detection of the harmonics

above the fundamental frequency has been only partially

implemented, partly because it is readily apparent when
conscan has failed.

III. Kalman Filter Estimator

A detailed general description of a Kalman filter is

given in [2]. However, square root algorithms in which

the Cholesky factors of the covariance matrix are prop-

agated are widely recognized to have superior numerical

properties, and hence we implement the square root co-
variance filter described in [3]. We assume that between

time intervals ti and ti+l, xi drifts according to

Xi+l =Xi + ni (13)

where ni is a random 2-vector with covariance Q =

E(nin_-). We assume that at time ti the state estimate

is known with covariance Mi = E ((xi- xi)(_i- xl)r).
Our measurements take the form

zi =H/x/+ vi (14)

where vi is a random vector with zero mean and whose

covariance is given by R --- E (v/v/r). From Eq. (8), we
can make the identifications

2P0]/ T

H, = --_x_i

v i = r]i
(15)

With these preliminaries completed, we are ready to

construct the Kalman filter estimator, which requires ex-

ecution of the following updates at each time interval ti:

i

k=i-n+l

Po,= (R i,[i,,)
1-- U +

xai = LRsin (wti)

2Poi/_ xT
Hi - h---7 ai

[R 1/2 HiSi 0 ]

T-- L o s, ql/_]

Ivy o o]
T x Ui [ Gi Si-{- 1 OJ

Ki GiVi -1/_

Mi SiS T

7,i Hixi

:_i+i :_i + Ki(zi -- ii)

(16)

Here, n is the number of samples in a complete con-

scan period. Ui is an orthogonal transformation that tri-

angularizes T and may be obtained, for example, using
Householder transformations. Quantities such as R 1/2 are

"matrix square roots" or Cholesky factors. The Kalman

filter algorithm is straightforward except for the estimation

average carrier power, (/5c_ ,which is computed asof the
\ ! i

a running average of the n most recent outputs from the
antenna receiver, and estimation of the maximum carrier

power, /50/, which is computed using Eq. (5). Thus, the

Kalman filter requires that at least n measurements have
been accumulated before the filter can be started. This

results in a delay of a single conscan period before the

Kalman filter begins producing estimates. A similar delay

also occurs in the FFT algorithm.
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IV. Selection of the Conscan Radius

An algorithm for selecting the conscan radius was de-

veloped as part of this study. We again assume a constant

target offset xi = x. Recall from Eq. (5) that the average

carrier power over a conscan period is given by

P (xTx -F R")) (17)(Pc) = P0 (1 - _-_

Obviously, the average carrier power is maximized for

x = 0, which can be attained by repointing the antenna

until the conscan center coincides with the target loca-

tion. However, the best that can be done in practice is

to repoint the antenna to place the conscan center at the

estimated target location _. In the newly pointed antenna,

the average carrier power becomes

P Ru)) (18)(P_) = Po (1 - _- ((x - R)m(x - R) +

and the average-carrier-power expectation, using the defi-

nition of M given in Eq. (ll), becomes

E((Pc))=Po(1--_(trace(g)-t-R2)) (19)

A necessary condition for the average power to be max-

imized is for the expectation of the carrier power given by

Eq. (19) to be stationary with respect to R; taking a dif-
ferential and setting it to zero requires

0

_--_trace(M) = -2R (20)

An analytic expression for M(R) for the Kalman filter

would be difficult if not impossible to obtain. In princi-

ple it would be possible to propagate (gM/OR along with
the Kalman filter equations, but this more than doubles

the number of computations performed at each--iteration

and excessively complicates the algorithm. Instead we use

Eq. (12), developed from FFT principles, as an approxima-

tion for M, with the reasoning that this result is an upper
bound on M because it is based on data from only a single

conscan period. In this case, solving Eq. (20) yields the
optimal conscan radius:

,/h4a_

Rop, = V _" (21)

Typically the conscan radius is set to result in 0.1 dB

gain loss in the carrier power. The set of parameters sum-

marized in Table 1 yields an optimal conscan radius of

Ropt = 1.86 mdeg for a 34-m antenna. The conscan radius

for 0.1-dB gain loss is 5.9 mdeg. This suggests that the

conscan radius is currently larger than it needs to be, at
least for this set of parameters.

V. Implementation Details

The behavior of the Kalman filter depends heavily on
the selection of the process noise and measurement noise

covariances and also on the covariance of the state estimate

used to initiate the algorithm. The following criteria are
used to select these values.

The measurement noise variance R is assumed to

be provided by the RF receiver. (See [4,5] and other
material 3'4 for information.) For the simulations, a model

developed elsewhere s is used. Though R is not indepen-
dent of offset angle, it can be considered to be constant for

the small offset angles used during eonsean.

The process noise covariance Q can be established by

considering the maximum anticipated drift in the offsets
within one sample period. We select

Q = (drift rate x sample time)_I (22)

where I is the 2 x 2 identity matrix. The drift rate used
in the simulations is

i R
drift rate = g x (23)conscan period

An alternative, which we suggest for implementation,

would be to use the reciprocal of the antenna gimbal servo
bandwidth.

The initial covariance M0 of the state estimate is given

by the expected uncertainty of the initial target location.

This should be based on the known open loop (blind)

3 M. Atmg and S. Stephens, "Statistics of the PdNo Estimator in
the Block V Receiver," JPL Interoffice Memorandum 3338-92-089

(internal document), Jet Propulsion Laboratory, Pasadena, Cali-
fornia, April 29, 1992.

4 R. E. Scheid, "Statistical Analysis of the Antenna Carrier Power,"

JPL Interoffice Memorandum 343-92-1291 (internal document), Jet
Propulsion Laboratory, Pasadena, California, October 9, 1992.

5 Ibld.
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pointing performance of the antenna. For the simulations,

we assume that the target can be located anywhere within
the conscan circle; thus we choose

M0 = R2I (24)

Vl. Computer Simulations

The parameters used in the computer simulations are

typical for a 34-m DSN antenna operating at Ka-band

(32 GHz) and are summarized in Table 1. A random-
number generator was used to simulate noise in the carrier

power. Each simulation used a different seed to start the

random-number generator, which ensures that a reason-

able cross section of cases is represented. The Kalman

filter estimator was then propagated through the data,

starting with a zero initial estimate. For comparison to

the existing algorithm, the FFT estimator was also prop-

agated. The FFT estimator is easily distinguished from

the Kalman filter because updates are produced only once

per conscan period. The simulations were written in Mat-
lab, which allows symbolic manipulation of matrices and

vectors within an interpretive programming environment.

The first simulation is shown in Figs. 2-4 and illustrates

the convergence of both Kalman filter and FFT estimators

to a constant target offset. The simulated carrier power is

shown in Fig. 2. The sinusoidal modulation of the carrier

power resulting from the nonzero offset is readily appar-

ent. Figure 3 shows the output of the Kalman filter and
the FFT estimator. The dashed line on the plot indicates

the true target location. The Kalman filter estimator be-

gins by collecting carrier power over a single conscan pe-
riod so that an estimate of the average carrier power (Pci)

can be obtained. Propagation of the Kalman filter begins

immediately thereafter. Convergence of the estimate is

virtually complete within a fraction of a eonscan period.

The Kalman filter estimates are consistently better than
the FFT estimates. In fact, in steady state the standard
deviation of the Kalman filter estimates is about one-third

that of the FFT estimates.

A measure of the convergence of the Kalman filter is

given by the norm of the estimate covariance Mi. Fig-

ure 4 shows the time history of IM_I and demonstrates

that the Kalman filter converges very rapidly at first and
then reaches steady state after about 100 see, or about

3 conscan periods. This is an important observation be-

cause it assures us that running the simulations longer will

not reveal any different behavior of the algorithm.

In the simulation shown in Fig. 5, the measurement

noise has been doubled to investigate the relative sensitiv-

ities of the two algorithms to measurement noise. Con-

vergence of the Kalman filter algorithm is changed very

little, though close examination reveals a larger amplitude
in the high-frequency component of the Kalman filter esti-

mates. Errors in the FFT estimates are pronounced, being

roughly doubled when the measurement noise is doubled.

As before, the Kalman filter estimates are about three

times more accurate than the FFT estimates, as measured

by the standard deviations in steady state.

The simulation shown in Fig. 6 shows the ability of

both algorithms to successfully estimate a relatively large

initial offset. Despite the fact that the initial offset was

set at more than three times the conscan radius, both al-

gorithms quickly converge to the correct value. In general,

convergence is improved in both algorithms as R grows

larger.

In Fig. 7, a data dropout between 100 and 150 sec was

simulated. The measurement covariance update and state

update steps in the Kalman filter algorithm are not applied

for each missing measurement. The most recent estimate

is used throughout the dropout period, and then when

data become available again, the Kalman filter gracefully

continues. Recall that this FFT algorithm is incapable of

accommodating missing data, so there is no corresponding
plot showing FFT estimates.

The ability of the algorithms to accommodate a drifting

parameter is illustrated in Fig. 8. For this simulation, the

offset is taken to be a constant drift at a rate of 2 mdeg
per 100 see. Both algorithms successfully track the offset,

though they consistently underestimate the offset slightly.

The performance of the algorithms in the presence of

a gradually changing maximum carrier power Po is shown

in Fig. 9. In this simulation, the nominal carrier power

is increased by 2 percent over each conscan period. The

Kalman filter algorithm behaves roughly as before, though
some oscillation is apparent in the estimates. Numerical

experiments have shown that the amplitude of these oscil-

lations increases with the drift rate Po, but degradation of

the Kalman filter estimates is gradual and, in this case, is

comparable to the FFT algorithm estimates.

VII. Summary, Conclusions, and Future
Work

A sequential estimator for executing conscan on the

DSN antennas has been described. The algorithm, based
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on a Kalman filter, has important advantages over the

existing FFT algorithm, including better accuracy of the

estimates, nearly continuous updates, and the ability to ac-

commodate missing data. It also has many of the desirable

properties of the FFT algorithm, particularly robustness

and the ability to track large initial offsets. In addition,

an algorithm that is used for selecting the optimal con-
scan radius and is based on maximizing carrier power is

proposed. The performance and behavior of the Kalman

filter algorithm as compared to the FFT algorithm have

been analyzed extensively through computer simulations,

which have shown that the Kalman filter algorithm is con-

sistently superior.

Future work on the Kalman filter algorithm should con-
centrate on a field implementation to demonstrate that it
can work as well with real data as it works in an idealized

computer simulation.
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Table 1. Selected parameters used in the simulations.

Quantity Value Description

n 32 Number of samples in a conscan period

t 1 sec Sample period

a n 5.3 X 10 -15 W Standard deviation of P0

tt a_ Measurement covariance

R 5.9 mdeg Conscan radius for 0.1-dB gain loss

M0 R2I Starting state covariance

Q (R) 2 Process noise covariance

x0 [_] St _rting estimate

h 65 mdeg ttalf-power beamwidth

P0 4.1,1 x 10 -13 W Maximum carrier power

Y

l /-- ANTENNA BORESIGHT

I /

Fig. 1. Definition of variables.

229



I I I I I I I I

I I I I _.I I I

I oJ 101

"0

E

z

_: 10 0
<
_>
O
o

-1
UJ

LL

O
:!
n-

O
z

0 1O0 200 300 400 500 600 700 800 900 1000

TIME, sec

10-2

T r T t T--T 1 f

\
\.____

100 200 300 400 500 600 700 800 900 1000

TIME, sec

Fig. 2. Simulated carrier power used for testing conscan

algorithms.

Fig. 4. Convergence of the estimate covarlance for a constant

offset.

,0t3.5

3.0--

LL

0 2.5

_ 2.0
<

LLI

(Zl
ILl

_- 1.0

0.5
UJ

l I I I I I I I I j

1ACTUAL
FFT ESTIMATE TARGET LOCATION

j-

- "_-----KALMAN FILTER ESTIMATE

o.c . I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

TIME, sec

Fig. 3. Convergence of Kalman filter and FFT estimates to a

constant offset.

4.0

-_ 3.5
E

u_ 3.0

_ 2,5

Z
_o
_ 2.0

d, _.5
o
LIJ

1.0

_ 0.5
UJ

0.0

I t I I t I t Itl I

_ --KAL.AN , TER ST,MAT Jl -

AOTUA TA G LOCAT,__

0 100 200 300 400 500 600 700 800 900 1000

TIME, sec

Fig. 5. Performance of the estimators for doubled measurement

noise.

230

E

=



25

8'

l--"20
LU
03
U.
LL

0
z 15
o_

_ _0

Q
I&l

__ 5
p-

U.I

I I t i I
ACTUAL TARGET LOCATION

- !

I I f_

FFT
ESTIMATE

"_-- KALMAN FILTER ESTIMATE
N

! _ I .I I t I I

0 20 40 60 80 100 120 140

TIME, sec

Fig. 6. Tracking of a large offset.

I I
160 180 200

2O

8' 18
"O

E
16

LU

,w 14
IJ_

o 12
o

W

6
I--
<

_ 4

w 2

I I I I l t I I I ,,,-"

- ACTUAL _ ./_

O FSE \

I00 200 300 400 500 600 700 800 900 100(

TIME, sec

Fig. 8. Tracking a constant rate drift in the offset.

4.0

-o_ 3.5
E

"' 3.0

_ 2.5

_ 2.0

W
-J
,,, 1.5

W

_- 1.0--

i.-
m 0.5--
W

0.0
0

I

I
2O

I I I I I 1 I 1

ACTUAL TARGET
LOCATION

KALMAN FILTER -
ESTIMATE

i

I I I I I t I I
40 60 80 100 120 140 160 180 200

TIME, sec

Fig. 7. Demonstration of the Kalman filter algorithm with a data

dropout.

4.0 1 I I I I I I I I I |

P3.5
FFT ESTIMATE

3.0 -

_ 2.5 -

_ 2.0 ......................

,opi, T OTU Lt
ET LOCATION

0'5 r_-_ KALMAN FILTER ESTIMATE

o.o/1 I 1 I I 1 I I I I
0 100 200 300 400 500 600 700 800 900 1000

TIME, sec

Fig. 9. Effect of maximum carrier power drift on estimator per-

formance.

231


